在人工智能领域,训练大型语言模型(LLMs)已成为推动技术进步的重要方向。然而,随着模型规模和数据集的不断扩大,传统的优化方法 —— 特别是 AdamW—— 逐渐显露出其局限性。研究人员面临着计算成本高、训练不稳定等一系列挑战,包括梯度消失或爆炸、参数矩阵更新不一致及分布式环境下的资源需求高等问题。因此,迫切需要更高效、更稳定的优化技术来应对这些复杂性。
昨天下午,DeepSeek 发布了一篇新论文,提出了一种改进版的注意力机制 NSA;加上还有创始人兼 CEO 梁文锋亲自参与,一时之间吸引眼球无数。 但其实就在同一天,月之暗面也发布了一篇主题类似的论文,并且同样巧合的是,月之暗面创始人兼 CEO ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果